Influence of Gut Microbiota on Mental Health via Neurotransmitters: A Review


  • Ting Liu Knowledge Representation and Reasoning (KR&R) Group, Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1085, 1081 HV, The Netherlands
  • K. Anton Feenstra Center for Integrative Bioinformatics VU (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1085, 1081 HV, The Netherlands
  • Jaap Heringa Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1085, 1081 HV, The Netherlands
  • Zhisheng Huang Knowledge Representation and Reasoning (KR&R) Group, Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1085, 1081 HV, The Netherlands



Gut microbiota, Neurotransmitter, Mental disorders, Microbiota-gut-brain axis


Mental disorders related to the imbalance of neurotransmitters, which are substantially affected by gut microbiota. Gut microbiota impacts on mental health by regulating the level of neurotransmitters in the host. To understand the influence of gut microbiota on mental health via neurotransmitters, we conducted a literature survey on the association between gut microbiota and neurotransmitters. We identified trustworthy evidences by critically appraising the related articles in terms of its evidence level. This paper provides a fairly comprehensive list of gut microbiota strains that can regulate neurotransmitters. Gut microbiota, neurotransmitters and mental disorders influence each other in a bidirectional way which form a triangle relationship. Understanding the triangle relationship benefits for the treatment of mental disorders. People who have experienced mental disorders may cure in the future by altering gut microbiota.


H. Jiang, Z. Ling, Y. Zhang, H. Mao, Z. Ma, Y. Yin, et al., Altered fecal microbiota composition in patients with major depressive disorder, Brain Behav. Immun. 48 (2015), 186–194.

M. Valles-Colomer, G. Falony, Y. Darzi, E.F. Tigchelaar, J. Wang, R.Y. Tito, et al., The neuroactive potential of the human gut microbiota in quality of life and depression, Nat. Microbiol. 4 (2019), 623–632.

J.A. Foster, K.-A.M. Neufeld, Gut–brain axis: how the microbiome influences anxiety and depression, Trends Neurosci. 36 (2013), 305–312.

J.R. Kelly, Y. Borre, C. O’Brien, E. Patterson, S.E. Aidy, J. Deane, P.J. Kennedy, et al., Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat, J. Psychiatr. Res. 82 (2016), 109–118.

P. Zheng, B. Zeng, C. Zhou, M. Liu, Z. Fang, X. Xu, et al., Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism, Mol. Psychiatry. 21 (2016), 786.

J.A. Bravo, P. Forsythe, M.V. Chew, E. Escaravage, H.M. Savignac, T.G. Dinan, J. Bienenstock, J.F. Cryan, Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve, Proc. Nat. Acad. Sci. 108 (2011), 16050–16055.

W.-H. Liu, H.-L. Chuang, Y.-T. Huang, C.-C. Wu, G.-T. Chou, S.Wang, Y.-C. Tsai, Alteration of behavior and monoamine levels attributable to lactobacillus plantarum ps128 in germ-free mice, Behav. Brain Res. 298 (2016), 202–209.

R.P. Smith, C. Easson, S.M. Lyle, R. Kapoor, C.P. Donnelly, E.J. Davidson, E. Parikh, J.V. Lopez, J.L. Tartar, Gut microbiome diversity is associated with sleep physiology in humans, PloS One. 14 (2019), e0222394.

E.M. Glenny, E.C. Bulik-Sullivan, Q. Tang, C.M. Bulik, I.M. Carroll, Eating disorders and the intestinal microbiota: mechanisms of energy homeostasis and behavioral influence, Curr. Psychiatry Rep. 19 (2017), 51.

T. Liu, Z. Huang, Evidence-based analysis of neurotransmitter modulation by gut microbiota, in: H. Wang, S. Siuly, R. Zhou, F. Martin-Sanchez, Y. Zhang, Z. Huang (Eds.), International Conference on Health Information Science, Springer, Cham, Switzerland, 2019, pp. 238–249.

M.D. Gershon, J. Tack, The serotonin signaling system: from basic understanding to drug development for functional gi disorders, Gastroenterology. 132 (2007), 397–414.

N. Terry, K.G. Margolis, Serotonergic mechanisms regulating the gi tract: experimental evidence and therapeutic relevance, in: B. Greenwood-Van Meerveld (Eds.), Gastrointestinal Pharmacology, Springer, Cham, Switzerland, 2016, pp. 319–342.

G. Eisenhofer, A. Aneman, P. Friberg, D. Hooper, L. Fandriks, H. Lonroth, B. Hunyady, E. Mezey, Substantial production of dopamine in the human gastrointestinal tract, J. Clin. Endocrinol. Metabol. 82 (1997), 3864–3871.

R. Xue, H. Zhang, J. Pan, Z. Du, W. Zhou, Z. Zhang, Z. Tian, R. Zhou, L. Bai. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer t cell-mediated hepatitis, Front. Immunol. 9 (2018), 2398.

K. Sjögren, C. Engdahl, P. Henning, U.H. Lerner, V. Tremaroli, M.K. Lagerquist, F. Bäckhed, C. Ohlsson, The gut microbiota regulates bone mass in mice, J. Bone Mineral Res. 27 (2012), 1357–1367.

J.M. Yano, K. Yu, G.P. Donaldson, G.G. Shastri, P. Ann, L. Ma, C.R. Nagler, R.F. Ismagilov, S.K. Mazmanian, E.Y. Hsiao, Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell. 161 (2015), 264–276.

F. Özoğul, Production of biogenic amines by morganella morganii, klebsiella pneumoniae and hafnia alvei using a rapid hplc method, Eur. Food Res. Technol. 219 (2004), 465–469.

Y. Asano, T. Hiramoto, R. Nishino, Y. Aiba, T. Kimura, K. Yoshihara, Y. Koga, N. Sudo, Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice, Am. J. Physiol. Gastrointest. Liver Physiol. 303 (2012), G1288–G1295.

Y. Gezginc, I. Akyol, E. Kuley, F. Özogul, Biogenic amines formation in streptococcus thermophilus isolated from home-made natural yogurt, Food Chem. 138 (2013), 655–662.

P.M. Stanaszek, J.F. Snell, J.J. O’Neill, Isolation, extraction, and measurement of acetylcholine from lactobacillus plantarum, Appl. Envron. Microbiol. 34 (1997), 237–239.

R. Mittal, L.H. Debs, A.P. Patel, D. Nguyen, K. Patel, G. O’Connor, et al., Neurotransmitters: the critical modulators regulating gut–brain axis, J. Cell. Physiol. 232 (2017), 2359–2372.

P.L. Delgado, F.A. Moreno, Role of norepinephrine in depression, J. Clin. Psychiatry. 61 (2000), 5–12. https://www.

C. Moret, M. Briley, The importance of norepinephrine in depression, Neuropsychiatr. Dis. Treat. 7 (2011), 9.

J.R. Homberg, D. Schubert, P. Gaspar, New perspectives on the neurodevelopmental effects of ssris, Trends Pharmacol. Sci. 31 (2010), 60–65.

J.E. Blundell, Serotonin manipulations and the structure of feeding behaviour, Appetite. 7 (1986), 39–56.

L. Trevor Young, J.J. Warsh, S.J. Kish, K. Shannak, O. Hornykeiwicz, Reduced brain 5-ht and elevated ne turnover and metabolites in bipolar affective disorder, Biol. Psychiatry. 35 (1994), 121–127.

J.M. Monti, D. Monti, The involvement of dopamine in the modulation of sleep and waking, Sleep Med. Rev. 11 (2007), 113–133.

R. Hoehn-Saric, Neurotransmitters in anxiety, Arch. Gen. Psychiatry. 39 (1982), 735–742.

P. Nuss, Anxiety disorders and gaba neurotransmission: a disturbance of modulation, Neuropsychiatr. Dis. Treat. 11 (2015), 165.

J.F. Cryan, K.J. O’Riordan, C.S.M. Cowan, K.V. Sandhu, T.F.S. Bastiaanssen, M. Boehme, et al., The microbiota-gut-brain axis, Physiol. Rev. (2019), 1877–2013.

T.C. Fung, C.A. Olson, E.Y. Hsiao, Interactions between the microbiota, immune and nervous systems in health and disease, Nat. Neurosci. 20 (2017), 145.

P. Strandwitz, Neurotransmitter modulation by the gut microbiota, Brain Res. 1693 (2018), 128–133.

T.G. Dinan, R.M. Stilling, C. Stanton, J.F. Cryan, Collective unconscious: how gut microbes shape human behavior, J. Psychiatr. Res. 63 (2015), 1–9.

Y. Li, Y. Hao, B. Zhang, F. Fan, The role of microbiome in insomnia, circadian disturbance and depression, Front. Psychiatry. 9 (2018), 669.

G. MacQueen, M. Surette, P. Moayyedi, The gut microbiota and psychiatric illness, J. Psychiatry Neurosci. JPN. 42 (2017), 75.

P.P. Roy-Byrne, K.W. Davidson, R.C. Kessler, G.J.G. Asmundson, R.D. Goodwin, L. Kubzansky, et al., Anxiety disorders and comorbid medical illness, Focus. 6 (2008), 467–485.

A. Naseribafrouei, K. Hestad, E. Avershina, M. Sekelja, A. Linløkken, R. Wilson, K. Rudi, Correlation between the human fecal microbiota and depression, Neurogastroenterol. Motil. 26 (2014), 1155–1162.

C.E. Schretter, J. Vielmetter, I. Bartos, Z. Marka, S. Marka, S. Argade, S.K. Mazmanian, A gut microbial factor modulates locomotor behaviour in drosophila, Nature. 563 (2018), 402.

E.A. Mayer, Gut feelings: the emerging biology of gut–brain communication, Nat. Rev. Neurosci. 12 (2011), 453.

V. Tremaroli, F. Bäckh, Functional interactions between the gut microbiota and host metabolism, Nature. 489 (2012), 242.

V.V. Roshchina, New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells, in: M. Lyte (Eds.), Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, Springer, Cham, Switzerland, 2016, pp. 25–77.

V.A. Shishov, T.A. Kirovskaya, V.S. Kudrin, A.V. Oleskin, Amine neuromediators, their precursors, and oxidation products in the culture of escherichia coli k-12, Appl. Biochem. Microbiol. 45 (2009), 494–497.

F. Özoğul, E. Kuley, Y. ÖZOĞUL, İ. ÖZOĞUL, The function of lactic acid bacteria on biogenic amines production by foodborne pathogens in arginine decarboxylase broth, Food Sci. Technol. Res. 18 (2012), 795–804.

W.A. Kunze, Y.-K. Mao, B. Wang, J.D. Huizinga, X. Ma, P. Forsythe, J. Bienenstock, Lactobacillus reuteri enhances excitability of colonic ah neurons by inhibiting calciumdependent potassium channel opening, J. Cell. Mol. Med. 13 (2009), 2261–2270.

P. Blier, M.E. Mansari, Serotonin and beyond: therapeutics for major depression, Philos. Trans. R. Soc. B Biol. Sci. 368 (2013), 1–7.

M.E. Mansari, B.P. Guiard, O. Chernoloz, R. Ghanbari, N. Katz, P. Blier, Relevance of norepinephrine–dopamine interactions in the treatment of major depressive disorder, CNS Neurosci. Ther. 16 (2010), e1–e17.

M.J. Nirenberg, C. Waters, Compulsive eating and weight gain related to dopamine agonist use, Mov. Disord. 21 (2006), 524–529.

N.D. Volkow, G.-J. Wang, L. Maynard, M. Jayne, J.S. Fowler, W. Zhu, et al., Brain dopamine is associated with eating behaviors in humans, Int. J. Eating Disord. 33 (2003), 136–142.

D.M. Tomkins, E.M. Sellers, Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence, CMAJ. 164 (2001), 817–821. content/164/6/817.

C. Chiapponi, F. Piras, F. Piras, C. Caltagirone, G. Spalletta, Gaba system in schizophrenia and mood disorders: amini review on third-generation imaging studies, Front. Psychiatry. 7 (2016), 61.

C.-Y. Lin, G.E. Tsai, H.-Y. Lane, Assessing and treating cognitive impairment in schizophrenia: current and future, Curr. Pharm. Design. 20 (2014), 5127–5138.

H. Anisman, Z. Merali, M.O. Poulte, Gamma-aminobutyric acid involvement in depressive illness interactions with corticotropin-releasing hormone and serotonin, In: Y. Dwivedi (Ed.), The Neurobiological Basis of Suicide, CRC Press/Taylor & Francis, Chicago, IL, USA, 2012.

B. Luscher, Q. Shen, N. Sahir, The gabaergic deficit hypothesis of major depressive disorder, Mol. Psychiatry. 16 (2011), 383.

M.O. Poulter, L. Du, V. Zhurov, Altered organization of gabaa receptor mrna expression in the depressed suicide brain, Front. Mol. Neurosci. 3 (2010), 3.

R.B. Lydiard, The role of gaba in anxiety disorders, J. Clin. Psychiatry. 64 (2003), 21–27. article/pages/2003/v64s03/v64s0304.aspx.

F. Petty, G.L. Kramer, D. Dunnam, A.J. Rush, Plasma gaba in mood disorders, Psychopharmacol. Bull. 26 (1990), 157–161. 35192-001.

J.M. Wieronska, K. Stachowicz, G. Nowak, A. Pilc, The loss of glutamate-gaba harmony in anxiety disorders, in: Anxiety Disorders, V. Kalinin (Eds,), IntechOpen, Poland, 2011.

A.A. Chadegani, H. Salehi, M.M. Yunus, H. Farhadi, M. Fooladi, M. Farhadi, N.A. Ebrahim, A comparison between two main academic literature collections: web of science and scopus databases, Asian Soc. Sci. 9 (2013), 18–26.

A.W. Harzing, S. Alakangas, Google scholar, scopus and the web of science: a longitudinal and cross-disciplinary comparison, Scientometrics. 106 (2016), 787–804

A. Martín-Martín, E. Orduna-Malea, M. Thelwall, E.D. López-Cózar, Google scholar, web of science, and scopus: a systematic comparison of citations in 252 subject categories, J. Informet. 12 (2018), 1160–1177.

M.E Rose, J.R. Kitchin, Pybliometrics: Scriptable bibliometrics using a Python interface to Scopus, SoftwareX. 10 (2019), 100263.

A.F. Thachil, R. Mohan, D. Bhugra, The evidence base of complementary and alternative therapies in depression, J. Affect. Disord. 97 (2007), 23–35.

R.A. Gross, K.C. Johnston, Levels of evidence: taking neurology® to the next level, Neurology. 72 (2009), 8–10.

H.O. Stolberg, G. Norman, I. Trop, Randomized controlled trials, Am. J. Roentgenol. 183 (2004), 1539–1544.

R.R.G. Knops, E.C. Van Dalen, R.L. Mulder, E. Leclercq, S.L. Knijnenburg, G.J.L. Kaspers, R. Pieters, H.N. Caron, L.C.M. Kremer, The volume effect in paediatric oncology: a systematic review, Ann. Oncol. 24 (2013), 1749–1753.

R.P. Brown, J.J. Mann, A clinical perspective on the role of neurotransmitters in mental disorders, Psychiatr. Serv. 36 (1985), 141–150.

A.D. Mandić, A. Woting, T. Jaenicke, A. Sander, W. Sabrowski, U. Rolle-Kampcyk, M. von Bergen, M. Blaut, Clostridium ramosum regulates enterochromaffin cell development and serotonin release, Sci. Rep. 9 (2019), 1177.

A. Mayr, G. Hinterberger, M.P. Dierich, C. Lass-Flörl, Interaction of serotonin with candida albicans selectively attenuates fungal virulence in vitro, Int. J. Antimicrob. Agents. 26 (2005), 335–337.

M.G. Strakhovskaia, E.V. Ivanova, G. Fraĭnkin, Stimulatory effect of serotonin on the growth of the yeast candida guilliermondii and the bacterium streptococcus faecalis, Mikrobiologiia. 62 (1993), 46–49. 8505913.

A.V. Oleskin, T.A. Kirovskaia, I.V. Botvinko, L.V. Lysak, Effect of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms, Mikrobiologiia. 67 (1998), 305–312.

K.D. Malikina, V.A. Shishov, D.I. Chuvelev, V.S. Kudrin, A.V. Oleskin, Regulatory role of monoamine neurotransmitters in saccharomyces cerevisiae cells, Appl. Biochem. Microbiol. 46 (2010), 620–625.

E.A. Tsavkelova, I.V. Botvinko, V.S. Kudrin, A.V. Oleskin, Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography, in Doklady Biochemistry: Proceedings of the Academy of Sciences of the USSR, Biochemistry Section, Moscow, Russia, 2000, vol. 372, p. 115.

M. Lyte, Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics, Bioessays. 33 (2011), 574–581.

P.P.E. Freestone, R.D. Haigh, M. Lyte, Specificity of catecholamine-induced growth in escherichia coli o157: H7, salmonella enterica and yersinia enterocolitica, FEMS Microbiol. Lett. 269 (2007), 221–228.

M. Hegde, T.K. Wood, A. Jayaraman, The neuroendocrine hormone norepinephrine increases pseudomonas aeruginosa pa14 virulence through the las quorum-sensing pathway, Appl. Microbiol. Biotechnol. 84 (2009), 763.

P. Strandwitz, K.H. Kim, D. Terekhova, J.K. Liu, A. Sharma, J. Levering, et al., Gaba-modulating bacteria of the human gut microbiota, Nat. Microbiol. 4 (2019), 396.

F. De Vadder, E. Grasset, L.M. Holm, G. Karsenty, A.J. Macpherson, L.E. Olofsson, F. Bäckh, Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks, Proc. Nat. Acad. Sci. 115 (2018), 6458–6463.

K. Pokusaeva, C. Johnson, B. Luk, G. Uribe, Y. Fu, N. Oezguen, et al., Gaba-producing bifidobacterium dentium modulates visceral sensitivity in the intestine, Neurogastroenterol. Motil. 29 (2017), e12904.

E. Barrett, R.P. Ross, P.W. O’toole, G.F. Fitzgerald, C. Stanton, ᆂ- aminobutyric acid production by culturable bacteria from the human intestine, J. Appl. Microbiol. 113 (2012), 411–417.

C.-H. Wu, Y.-H. Hsueh, J.-M. Kuo, S.-J. Liu, Characterization of a potential probiotic lactobacillus brevis rk03 and efficient production of ᆂ-aminobutyric acid in batch fermentation, Int. J. Mol. Sci. 19 (2018), 143.

Y.R. Cho, J.Y. Chang, H.C. Chang, Production of gammaaminobutyric acid (gaba) by lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells, J. Microbiol. Biotechnol. 17 (2007), 104–109.

N. Komatsuzaki, J. Shima, S. Kawamoto, H. Momose, T. Kimura, Production of ᆂ-aminobutyric acid (gaba) by lactobacillus paracasei isolated from traditional fermented foods, Food Microbiol. 22 (2005), 497–504.

S. Siragusa, M. De Angelis, R. Di Cagno, C.G. Rizzello, R. Coda, M. Gobbetti, Synthesis of ᆂ-aminobutyric acid by lactic acid bacteria isolated from a variety of italian cheeses, Appl. Environ. Microbiol. 73 (2007), 7283–7290.

Y.-C. Su, J.-J. Wang, T.-T. Lin, T.-M. Pan, Production of the secondary metabolites ᆂ-aminobutyric acid and monacolin k by monascus, J. Indus. Microbiol. Biotechnol. 30 (2003), 41–46.

S.-Y. Yang, F.-X. Lü, Z.-X. Lu, X.-M. Bie, Y. Jiao, L.-J. Sun, B. Yu, Production of ᆂ-aminobutyric acid by streptococcus salivarius subsp. Thermophilus y2 under submerged fermentation, Amino Acids. 34 (2008), 473–478.

S.-H. Kim, B. Ben-Gigirey, J. Barros-Velazquez, R.J. Price, H. An, Histamine and biogenic amine production by morganella morganii isolated from temperature-abused albacore, J. Food Prot. 63 (2000), 244–251.

J. Scheffer, W. König, J. Hacker, W. Goebel, Bacterial adherence and hemolysin production from escherichia coli induces histamine and leukotriene release from various cells, Infect. Immun. 50 (1985), 271–278.

M. Diaz, B. del Rio, V. Ladero, B. Redruello, M. Fernández, M.C. Martin, M.A. Alvarez, Isolation and typification of histamine-producing lactobacillus vaginalis strains from cheese, Int. J. Food Microbiol. 215 (2015), 117–123.

R. Ursin, Serotonin and sleep, Sleep Med. Rev. 6 (2002), 55–67.

H. Steiger, Eating disorders and the serotonin connection: state, trait and developmental effects, J. Psychiatry Neurosci. 29 (2004), 20–29.

E.M. Hull, J.W. Muschamp, S. Sato, Dopamine and serotonin: influences on male sexual behavior, Physiol. Behav. 83 (2004), 291–307.

T. Jenkins, J. Nguyen, K. Polglaze, P. Bertrand, Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis, Nutrients. 8 (2016), 56.

P.J. Cowen, M. Browning, What has serotonin to do with depression?, World Psychiatry. 14 (2015), 158–160.

K.M. Nautiyal, R. Hen, Serotonin receptors in depression: from Ato B, F1000Research. 6 (2017), 123.

A. Neumeister, Tryptophan depletion, serotonin, and depression: where do we stand?, Psychopharmacol. Bull. 37 (2003), 99–115.

A.J.W. Van der Does, The effects of tryptophan depletion on mood and psychiatric symptoms, J. Affect. Disord. 64 (2001), 107–119.

B.W. Dunlop, C.B. Nemeroff, The role of dopamine in the pathophysiology of depression, Arch. Gen. Psychiatry. 64 (2007), 327–337.

A.A. Grace, P. Belujon, Dopamine system dysregulation in major depressive disorders, Int. J. Neuropsychopharmacol. 20 (2017), 1036–1046.

L.F. Burbulla, P. Song, J.R. Mazzulli, E. Zampese, Y.C. Wong, S. Jeon, et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in parkinson’s disease, Science. 357 (2017), 1255–1261.

K.J. Ressler, C.B. Nemeroff, Role of norepinephrine in the pathophysiology and treatment of mood disorders, Soc. Biol. Psychiatry. 46 (1999), 1219–1233.

J.J. Schildkraut, The catecholamine hypothesis of affective disorders: areview of supporting evidence, Am. J. Psychiatry. 122 (1965), 509–522.

C.Y. Ko, H.-T.V. Lin, G.J. Tsai, Gamma-aminobutyric acid production in black soybean milk by lactobacillus brevis fpa 3709 and the antidepressant effect of the fermented product on a forced swimming rat model, Process Biochem. 48 (2013), 559–568.

M. Nishimura, S.-I. Yoshida, M. Haramoto, H. Mizuno, T. Fukuda, H. Kagami-Katsuyama, A. Tanaka,T. Ohkawara, Y. Sato, J. Nishihira, Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure, J. Tradit. Complement. Med. 6 (2016), 66–71.

J. Taneera, Z. Jin, Y. Jin, S.J. Muhammed, E. Zhang, S. Lang, et al., ᆂ-aminobutyric acid (gaba) signalling in human pancreatic islets is altered in type 2 diabetes, Diabetologia. 55 (2012), 1985–1994.

F. Petty, Gaba and mood disorders: a brief review and hypothesis, J. Affect. Disord. 34 (1995), 275–281.

C.G.W. Wong, T. Bottiglieri, O.C. Snead III, Gaba, ᆂ- hydroxybutyric acid, and neurological disease, Ann. Neurol. 54 (2003), S3–S12.

W. Barcik, M. Wawrzyniak, C.A. Akdis, L. O’Mahony, Immune regulation by histamine and histamine-secreting bacteria, Curr. Opin. Immunol. 48 (2017), 108–113.

S. Norn, P. Stahl Skov, C. Jensen, J.O. Jarløv, F. Espersen, Histamine release induced by bacteria. A new mechanism in asthma?, Agents Actions. 20 (1987), 29–34.

M. Steriade, Acetylcholine systems and rhythmic activities during the waking–sleep cycle, Prog. Brain Res. 145 (2004), 179–196.

M.J. Higley, M.R. Picciotto, Neuromodulation by acetylcholine: examples from schizophrenia and depression, Curr. Opin. Neurobiol. 29 (2014), 88–95.

M.T. Bailey, S.E. Dowd, J.D. Galley, A.R. Hufnagle, R.G. Allen, M. Lyte, Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressorinduced immunomodulation, Brain Behav. Immun. 25 (2011), 397–407.

C. Sherman, NIDA Notes Contributing Writer, The defining features of drug intoxication and addiction can be traced to disruptions in cell-to-cell signaling, NIDA Notes Natl. Inst. Health Natl. Inst. Drug Abuse. 21 (2007). https://www.addictioncounselorce. com/articles/101591/101591.pdf.

J. Bienenstock, W. Kunze, P. Forsythe, Microbiota and the gut– brain axis, Nutr. Rev. 73 (2015), 28–31.

J.F. Cryan, S.M. O’mahony, The microbiome-gut-brain axis: from bowel to behavior, Neurogastroenterol. Motil. 23 (2011), 187–192.

K.M. Neufeld, N. Kang, J. Bienenstock, J.A. Foster, Reduced anxiety-like behavior and central neurochemical change in germ-free mice, Neurogastroenterol. Motil. 23 (2011), 255-e119.

J.-X. Pan, F.-L. Deng, B.-H. Zeng, P. Zheng, W.-W. Liang, B.-M. Yin, et al., Absence of gut microbiota during early life affects anxiolytic behaviors and monoamine neurotransmitters system in the hippocampal of mice, J. Neurol. Sci. 400 (2019), 160–168.

L. Jianguo, J. Xueyang, W. Cui, W. Changxin, Q. Xuemei, Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress, Trans. Psychiatry. 9 (2019), 40.

K.D. McGaughey, T. Yilmaz-Swenson, N.M. Elsayed, D.A. Cruz, R.M. Rodriguiz, M.D. Kritzer, et al., Relative abundance of akkermansia spp. and other bacterial phylotypes correlates with anxiety-and depressive-like behavior following social defeat in mice, Sci. Rep. 9 (2019), 3281.

I. Lukić, D. Getselter, O. Ziv, O. Oron, E. Reuveni, O. Koren, E. Elliott, Antidepressants affect gut microbiota and ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior, Trans. Psychiatry. 9 (2019), 133.

X. Yuan, Y. Kang, C. Zhuo, X.-F. Huang, X. Song, The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways, Biochem. Biophys. Res. Commun. 512 (2019), 373–380.

K. Korpela, A. Salonen, L.J. Virta, R.A. Kekkonen, K. Forslund, P. Bork, W.M. De Vos, Intestinal microbiome is related to lifetime antibiotic use in finnish pre-school children, Nat. Commun. 7 (2016), 10410.

S.E. Aidy, T.G. Dinan, J.F. Cryan, Immune modulation of the brain-gut-microbe axis, Front. Microbiol. 5 (2014), 146.

M. Carabotti, A. Scirocco, M.A. Maselli, C. Severi, The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems, Ann. Gastroenterol. Quart. Publ. Hellenic Soc. Gastroenterol. 28 (2015), 203. pmc/articles/PMC4367209/pdf/AnnGastroenterol-28-203.pdf.

E.A. Mayer, K. Tillisch, A. Gupta, Gut/brain axis and the microbiota, J. Clin. Invest. 125 (2015), 926–938.

H.-X. Wang, Y.-P. Wang, Gut microbiota-brain axis, Chin. Med. J. 129 (2016), 2373.

L. Zhuang,H. Chen, S. Zhang, J. Zhuang, Q. Li, Z. Feng, Intestinal microbiota in early life and its implications on childhood health, Genom. Proteom. Bioinf. 17 (2019), 13–25.



How to Cite

Liu T, Feenstra KA, Heringa J, Huang Z. Influence of Gut Microbiota on Mental Health via Neurotransmitters: A Review. JAIMS [Internet]. 2021 May 5 [cited 2023 Feb. 4];1(1-2):1-14. Available from: